Simple Planar Graph Partition into Three Forests
نویسندگان
چکیده
We describe a simple way of partitioning a planar graph into three edge-disjoint forests in O(n log n) time, where n is the number of its vertices. We can use this partition in Kannan et al.‘s graph representation (1992) to label the planar graph vertices so that any two vertices’ adjacency can be tested locally by comparing their names in constant time.
منابع مشابه
Covering planar graphs with degree bounded forests
We prove that every planar graphs has an edge partition into three forests, one having maximum degree 4. This answers a conjecture of Balogh et al. (J. Combin. Theory B. 94 (2005) 147-158).We also prove that every planar graphs with girth g ≥ 6 (resp. g ≥ 7) has an edge partition into two forests, one having maximum degree 4 (resp. 2).
متن کاملEdge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling
In 1974, Kundu [4] has shown that triangulated (or maximal) simple toroidal graphs have three edge-disjoint spanning trees. We extend this result by showing that a triangulated graph on an orientable surface of genus g has at least three edge-disjoint spanning trees and so we can partition the edges of graphs of genus g into three forests plus a set of at most 6g − 3 edges.
متن کاملEdge Partition of Toroidal Graphs into Forests in Linear Time
In this paper we give a linear algorithm to edge partition a toroidal graph, i.e., graph that can be embedded on the orientable surface of genus one without edge crossing, into three forests plus a set of at most three edges. For triangulated toroidal graphs, this algorithm gives a linear algorithm for finding three edge-disjoint spanning trees. This is in a certain way an extension of the well...
متن کاملAcyclic colorings of planar graphs
It is shown that a planar graph can be partitioned into three linear forests. The sharpness of the result is also considered. In 1969, Chartrand and Kronk [2] showed that the vertex arboricity of a planar graph is at most 3. In other words, the vertex set of a planar graph can be partitioned into three sets each inducing a forest. In this paper we present an improvement on this result: that the...
متن کاملPartitions of Graphs into Trees
In this paper, we study the k-tree partition problem which is a partition of the set of edges of a graph into k edge-disjoint trees. This problem occurs at several places with applications e.g. in network reliability and graph theory. In graph drawing there is the still unbeaten (n − 2) × (n − 2) area planar straight line drawing of maximal planar graphs using Schnyder’s realizers [15], which a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 84 شماره
صفحات -
تاریخ انتشار 1998